Preparation, characterization and thermal stability of tellurites and tellurates of uranium

P. N. NAMBOODIRI, S. N. TRIPATHI[∗] Applied Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India

Uranium tellurates, UTeO₅ and UTe₃O₉ were prepared by heating $UO_2 + TeO_2$ and $U_3O_8 + TeO_2$ in air/oxygen and the tellurite UTe₃O₈ by heating $UO_2 + TeO_2$ in vacuum sealed quartz ampoule. The compounds were characterized by X-ray diffraction (XRD) and thermogravimetry (TG) . A new tellurite compound $UTeO₄$ was synthesized. Their thermal stability was determined in oxygen, argon and argon-8%hydrogen in the temperature range of ambient temperature to 950 °C. UTeO₅ and UTe₃O₉ are stable in flowing oxygen up to 925 and 750 °C, respectively under dynamic heating at 10 K/min. UTe₃O₉ decomposes in O_2 /Ar/Ar-8%H₂ via formation of UTeO₅, whereas UTe₃O₈ decomposes in Ar-8%H₂ via formation of UTeO₄. UTe₃O₉ decomposes at 560 °C but all the other compounds decompose at 460 °C in Ar-8%H₂. © 2000 Kluwer Academic Publishers

1. Introduction

Three ternary compounds in the UO_{2+x} -TeO₂-O section of the U-Te-O system namely, UTeO₅, UTe₃O₈ and UTe₃O₉ are reported in the literature. UTeO₅ and $UTe₃O₈$ are known as schmidtterite and cliffordite respectively. Most of the reported work on synthesis of uranium tellurates: UTe O_5 and UTe₃ O_9 is confined to solution route. UTeO₅ was initially prepared [1] by the reaction of uranyl acetate with hydrochloric acid solution of TeO₂ at room temperature. Later, UTeO₅ [2] and UTe₃O₉ [3] were prepared by high pressure synthesis in vycor tubes in stainless steel bomb by heating water solutions of the mixtures: $UO_3·H_2O + TeO_2$ and $UF_4 + TeO_2 + H_2O_2$ in the temperature range of 100– 400 \degree C. There is only one report [4] on the solid state synthesis of these compounds in sealed vycor tubes from the mixtures: $UO_3 + TeO_2$ and $UO_2 + TeO_2$ at $700\degree$ C. There is no systematic study on solid state preparation of the compounds from UO_2 and U_3O_8 in O_2 /air and their thermal stability. In addition, the existence of $UTe₃O₈$ is suspect in view of the reaction: $4UO_2 + 12TeO_2 \rightarrow UTeO_5 + 3UTe_3O_9 + 2Te(g)$ reported in [4]. The present work is undertaken in order to address the questions of synthesis, existence and stability of the tellurites and tellurates in general and, $UTeO₄$ and $UTe₃O₈$ in particular. The studies are of utmost importance and interest in assessing the possibility of formation of these compounds in irradiated UO2 based nuclear fuels.

2. Experimental

The two main experimental techniques used in this work were thermogravimetry (TG) and differential thermal analysis (DTA). In addition, X-ray diffracto metry (XRD) was employed for the identification of various condensed phases.

2.1. Materials

TeO₂ is 99.995% pure (Aldrich). $UO₂$ was prepared from nuclear pure UO_{2+x} (supplied by Atomic Fuels Division, BARC) by reduction in Ar-8% H_2 stream. U_3O_8 was obtained by heating the U_2_{+x} sample at 700 \degree C in oxygen to a constant mass.

2.2. X-ray diffraction (XRD)

Phase characterization of the starting materials e.g. $UO₂$, $U₃O₈$ and TeO₂ and the compounds prepared was carried out by XRD at ambient temperature using the Philips X-ray powder diffractometer (Model No. P.W. 1729/40) with nickel filter and graphite monochromator.

2.3. Thermogravimetry (TG)

The initiation temperatures and steps in various compound formation reactions from the mixtures: $UO₂$ + TeO₂ and $U_3O_8 + TeO_2$ in flowing oxygen were recorded at a heating rate of 10 K/min on a thermogravimetric balance (Model Shimatzu DT-30) at a sensitivity of $\pm 50 \mu$ g. The TG balance was also employed for determinations of the oxygen stoichiometry of the reactants and the products.

The thermocouple of the TG apparatus and the chart temperature were calibrated by employing drop method described in [5]. The sudden change in mass resulting due to drop of indium, Te, Sb, silver and pellet of $Li₂SO₄$ on melting was registered at 157, 449.5, 630.6,

[∗] Author to whom all correspondence should be addressed.

859 and 961.8 ℃ respectively. The above pure substances were suspended freely by a thin steel wire from the central suspension wire of the thermogravimetric balance.

2.4. Differential thermal analysis (DTA)

DTA was carried out employing a home made and upgraded DTA unit [6] in flowing argon. The melting points of UTeO₄ and UTe₃O₈ were determined by DTA. The DTA apparatus was calibrated with melting points of Zn (419.5 °C), Te (449.5 °C), TeO₂ (733 °C) and Ag (961.8 \degree C). The calibrants and the compounds investigated were all contained in silica DTA crucibles. The crucibles were sealed under vacuum (\sim 10⁻⁴ Torr).

2.5. Preparation and characterization of the compounds

 $UO_{2.00}$ was prepared by heating UO_{2+x} in Ar-8% H_2 stream at $750\textdegree C$ while U_3O_8 was prepared by heating in oxygen stream at 700 ◦C.

 $UTeO₅$ and $UTe₃O₉$ were prepared by heating $(1:1)$ and $(1:3)$ mixtures of $UO₂$ and TeO₂ in oxygen at 600 °C first for 4 h and then at 720 °C for 2 h. The formation of these compounds can be represented by the following reactions;

$$
UO_{2.00}(s) + TeO_2(s) + \frac{1}{2}O_2(g) = UTeO_5(s) \quad (F1)
$$

and

$$
UO_{2.00}(s) + 3TeO_2(s) + \frac{1}{2}O_2(g) = UTe_3O_9(s) \quad (F2)
$$

These compounds were also prepared by an alternate route using U_3O_8 according to the reactions given below:

$$
U_3O_8(s) + 3TeO_2(s) + \frac{1}{2}O_2(g) = 3UTeO_5(s)
$$
 (F3)

and

$$
U_3O_8(s) + 9TeO_2(s) + \frac{1}{2}O_2(g) = 3UTe_3O_9(s)
$$
 (F4)

by heating the mixtures of U_3O_8 and TeO₂ in (1 : 3) and $(1:9)$ proportions at 650 °C for 3 h.

Thermogravimetric study of the synthesis of the above compounds in dynamic heating at the rate of 10 K/min shows attainment of constant mass hence completion of the formation reaction at 690° C. The results are presented in Table I and Fig. 2.

 $UTeO₄$ and $UTe₃O₈$ were prepared by mixing requisite amounts of $UO_{2.00}$ and TeO₂ and heating at 450 and 750 ◦C, respectively in silica ampoules sealed under vacuum according to the reactions below:

$$
UO2(s) + TeO2(s) = UTeO4(s)
$$
 (F5)

and

$$
UO_2(s) + 3TeO_2(s) = UTe_3O_8(s)
$$
 (F6)

All the above compounds thus synthesized were characterized thermogravimetrically for their oxygen contents by dynamic heating in oxygen and/or argon and phase analysed by XRD. The results are given in Table II. UTe O_4 being reported for the first time does not have any standard powder pattern to compare with.

The X-ray powder patterns of UTeO₄ and UTe₃O₈ had lines different from those of UO_2 and TeO_2 (Fig. 1)

Mixture	Temperature range $(^{\circ}C)$	Environment	Initial mass (mg)	Constant mass (mg)	Calculated mass of compound (mg)	Stoichioimetry	Phase (XRD)
$UO_{2.00} + TeO_2$	380-700	flo. $O2$	63.65	66.05	66.02	UTeO _{5.01}	UTeO ₅
$UO_{2.00} + 3TeO_{2}$	350-700	-do-	110.90	113.30	113.27	UTe ₃ O _{9.01}	UTe ₃ O ₉
$U_3O_8 + 3TeO_2$	510-700	-do-	48.90	49.54	49.49	UTeO _{5.03}	UTeO ₅
$U_3O_8 + 9TeO_2$	510-710	-do-	53.80	54.18	54.18	UTe ₃ O _{9.00}	UTe ₃ O ₉

TABLE II Results of thermogravimetric characterization of the compounds

 $f_0 = f_0$ flowing, R.T. = room temperature.

Figure 1 XRD patterns of TeO₂, UO_2 , $UTeO_4$ and UTe_3O_8 .

and the lines characteristic of $UO₂$ and TeO₂ were absent. The patterns were noticeably different from those of the corresponding mechanical mixtures of the two constituents. In addition, these phases melted at 1100 and 855 ◦C, respectively which are different from the melting points of the constituents: $UO₂$ (2865 °C) and TeO₂ (733 \degree C). The XRD and melting point evidences confirm that the above substances are compounds and not mixtures of $UO₂$ and TeO₂.

Thermal stabilities of all the above compounds were studied in the temperature range of ambient temperature—950 \degree C by thermogravimetry in flowing oxygen, argon and $Ar-8\%H_2$. The composition of the compounds were determined by complete decomposition to constant mass in argon, oxygen and Ar-8%H2 streams. The results are presented in Tables III and IV.

3. Results and Discussion

The reactions $(F1)$, $(F2)$, $(F3)$ and $(F4)$ involve intake of oxygen. Uranium dioxide is known to take up oxygen in solid solution to varying extents. Hence it was considered imperative to accurately determine the oxygen contents of the condensed phases and define the chemical reactions precisely. Therefore, oxygen stoichiometries of the reactants: UO_2 , U_3O_8 , TeO₂ and the products: UTeO₄, UTeO₅, UTe₃O₈ and UTe₃O₉ were determined by TG in oxygen and argon. The results are presented in Table II.

The starting material uranium dioxide obtained by reduction of UO_{2+x} in Ar-8%H₂ at 750 °C and physically characterized by XRD as $UO₂$, was thermogravimetrically characterized for oxygen stoichiometry by dynamic heating at 10 K/min in flowing oxygen. The oxidation took place in two steps; one in the range of 150– 240 °C and the other in 330–370 °C leading to constant masses over 240–330 ◦C and 370–750 ◦C (Fig. 2a). The mass gain in 48.05 mg of $UO₂$ in each step of oxidation being equal to 0.8 mg, the end phases of the two steps were identified as U_3O_7 and U_3O_8 . The oxygen stoichiometries of the two oxides calculated from the mass gain and the starting material being $UO_{2.00}$, worked out as $U_3O_{7.007}$ and $U_3O_{8.01}$ (Table II). The equality of the mass gains in the two steps, mass constancies corresponding to U_3O_7 and U_3O_8 and the calculated stoichiometries agreeing very closely to U_3O_7 and U_3O_8 confirm the oxygen stoichiometry of the reduced uranium dioxide as $UO_{2.00}$. The oxygen stoichiometry of the reduced uranium dioxide was further confirmed by thermogravimetric reduction of the above formed $U_3O_{8.01}$ in Ar-8% H_2 at 700 °C. 49.95 mg of $U_3O_{8.01}$ lost a part of its oxygen and attained constant mass of 48.04 mg corresponding to $UO_{2.00}$.

Similarly, TeO₂ containing 99.995% tellurium (IV) oxide and characterized by XRD, was thermogravimetrically analysed for oxygen content by heating in oxygen and argon streams upto 575 ◦C, wherein 10.30 and 12.00 mg of the substance run in oxygen and argon respectively did not gain or lose mass confirming the oxygen stoichiometry in tellurium dioxide as $TeO_{2.00}$.

Thus having experimentally established the oxygen stoichiometries of the reacting oxides as $UO_{2.00}$. $U_3O_{8,00}$ and TeO_{2.00}, the formation reactions UTeO₅ and $UTe₃O₉$ were thermogravimetrically investigated.

The $(1:1)$ mixture of $UO₂$ and TeO₂ (63.65 mg) and the $(1:3)$ mixture of U_3O_8 and TeO₂ (48.90 mg) heated dynamically in oxygen stream reacted with oxygen and attained constant mass of 66.05 and 49.54 mg respectively, remaining unchanged upto $700\degree$ C. The mixture containing $UO₂$ undergoes reaction in two steps and

Figure 2 TG patterns of synthesis.

the one with U_3O_8 reacts only in one step as shown in Fig. 2b and c respectively and the reactions can be represented as:

$$
3UO2 + 3TeO2 + \frac{3}{2}O2 \rightarrow U3O7 + 3TeO2 + O2
$$

$$
\rightarrow U3O8 + 3TeO2 + \frac{1}{2}O2 \rightarrow UTeO5
$$
 (a)

and

$$
U_3O_8 + 3TeO_2 + \frac{1}{2}O_2 \rightarrow 3UTeO_5
$$
 (b)

The end products of the two routes calculated on the basis of mass gain work out to be $UTeO_{5.01}$ and $UTeO_{5.03}$ respectively. In case of $UO_2 + TeO_2$, the reaction of formation of UTeO₅ starts at 395 °C while in $U_3O_8 + TeO_2$ it begins at 515° C, the temperature of initiation of formation of $UTeO₅$ in the former reaction being lower than that in the latter. The two mixtures prepared from the same batch samples of $UO₂$ and TeO₂ had nearly identical masses in the range of 50–60 mg with nearly equal exposed surface area (spread over 8 mm dia area in a quartz crucible). The origin, nature, size of particles

and impurities present in the starting materials being nearly the same in the two, the diffusion barrier, if any, would be identical in the two cases. Hence the difference of 120° C between the initiation temperatures of the two reactions is real and is most likely related to the reactivity of the *in-situ* generated U_3O_8 . The inertness of the pure uranium oxides (prepared independently) at low temperatures is well known in the literature [7].

The reactivity of the *in-situ* generated U_3O_8 is inferred from the comparison of the thermograms b and c of the Fig. 2 recorded at one and the same heating rate (10 K/min). From b one can see that the formation of U_3O_8 begins at 340 °C and is complete by 395 °C, the initiation temperature of formation of UTeO₅ i.e. U_3O_8 remains in contact with TeO₂ only for \sim 6 min before entering into reaction to form $UTeO₅$ whereas from c it is amply clear that the period of contact between U_3O_8 and TeO₂ before the initiation of the reaction is ∼52 min. Shorter contact period initiating a reaction at lower temperature vis-a-vis prolonged contact leading to the same reaction at a relatively higher temperature can only be understood in terms of the reactivity of the U_3O_8 powders in the two cases.

TABLE III Results of thermogravimetric decomposition of the compounds

Compounds	Temperature (°C)	Environment	Initial mass(mg)	Loss (mg)	Constant mass (mg)	Calculated ultimate mass (mg)	Residual phase	Remarks
UTeO ₅	>925	flo. $O2$	10.00	3.15			$U_3O_8 + UTeO_5$	Partial Decomp.
	>900	flo. Ar	10.00	3.75	6.25	6.30	U_3O_8	Compl. Decomp.
UTe ₃ O ₉	>750	flo. $O2$	10.00	2.50		$-\$	$UTeO5 + UTe3O9$	Partial Decomp.
	>750	flo. Ar	10.00	6.35	3.65	3.67	U_3O_8	Compl. Decomp.

 $decomp. = decomposition, compl. = complete.$

TABLE IV Results of thermogravimetric reduction in Ar-8%H2

Compound	Temperature range $(^{\circ}C)$	Initial mass (mg)	Residue mass (mg)	Calculated residue mass (mg)	Residual phase
UTeO ₄	458-698	10.00	6.28	6.29	UO ₂
UTeO ₅	468-783	10.00	6.10	6.06	UO ₂
UTe ₃ O ₈	480–696	10.00	5.74	5.74	UTeO ₄
	760-808	5.74	3.62	3.61	UO ₂
UTe ₃ O ₉	560-740	10.00	5.82	5.83	UTeO ₅
	750–763	5.82	3.53	3.53	UO ₂

The $(1:3)$ mixture of $UO₂$ and TeO₂ (110.90 mg) and the $(1:9)$ mixture of U_3O_8 and TeO₂ (53.80 mg) heated dynamically upto $700\degree C$ in flowing oxygen in TG unit gained oxygen and saturated at constant mass of 112.90 and 54.18 mg respectively, leading to oxygen stoichiometries of $UTe₃O_{9.01}$ and $UTe₃O_{9.03}$. The steps in the thermogravimetric run shown in d and e in Fig. 2 are represented as:

$$
3UO2 + 9TeO2 + \frac{3}{2}O2 \rightarrow U3O7 + 9TeO2 + O2
$$

$$
\rightarrow U3O8 + 9TeO2 + \frac{1}{2}O2 \rightarrow 3UTe3O9
$$
 (c)

and

$$
U_3O_8 + 9TeO_2 + \frac{1}{2}O_2 \rightarrow 3UTe_3O_9
$$
 (d)

Here too, the reaction initiation temperatures for the two mixtures being 395 and $515\,^{\circ}\text{C}$ and in the same sequence as observed in the synthesis of $UTeO₅$ represented by equations (a) and (b) endorse the higher activity of the *in situ* generated U_3O_8 .

The compounds, $UTeO_4$ and UTe_3O_8 , prepared from the $(1:1)$ and $(1:3)$ mixtures of $UO₂$ and TeO₂ by heating in vacuum sealed ampoules, have their melting points at 1100 and 855 ◦C, that are far different from those of the constituents; UO_2 (2830 °C) and TeO₂ (733 °C). Their inherent oxygen stoichiometry of $UO₂$ and TeO₂, mixed in the definite proportions of $(1:1)$ and $(1:3)$, fixes the composition of the resulting compounds to be $UTeO_4$ and UTe_3O_8 . The powder diffraction pattern of $UTe₃O₈$ was observed to be identical to that of $UTe₃O₉$ as reported [4], whereas the pattern of UTeO4 was by and large identical with that of $UTeO₅$ and had some additional diffraction lines. The unit cell of $UTeO₄$ is orthorhombic and has the dimensions: $a = 6.16 \text{ Å}, b = 10.77 \text{ Å}$ and $c = 14.73 \text{ Å}.$ Since diffraction patterns are very closely similar for $UTeO₄$ and $UTeO₅$, the space group of $UTeO₄$ is likely to be $Pbc2₁$ or Pbcm i.e. the same as that of UTeO₅.

Thermogravimetric characterization of UTeO₄ was carried out by dynamic heating of the compound in flowing oxygen. 11.5 mg of the compound gained in oxygen to a constant mass of 11.95 mg (Table II) corresponding to $UTeO_{5.05}$. The mass gain equivalent to 0.5 mole of O_2 is consistent with the reaction;

$$
UTeO_4(s) + \frac{1}{2}O_2(g) = UTeO_5(s)
$$

The Oxygen stoichiometry of the synthesized product, UTe $O_{5.01}$, was characterized by thermogravimetry in oxygen and argon upto 885 ◦C in dynamic heating at 10 K/min. The initial mass of the compound remained unchanged indicating no gain or loss of oxygen. Thus the compound is characterized to be $UTeO₅$.

 $UTe₃O₈$ was characterized by its reaction with oxygen, in which one mole of the compound would acquire one half of a mole of O_2 to form UTe₃O₉. In fact, 10 mg of the compound reacted with O_2 attained a constant mass of 10.22 mg leading to $UTe₃O_{9.03}$ which was phase characterized as $UTe₃O₉$ by XRD.

In characterization of $UTe₃O₉$ for its oxygen content by dynamic heating in oxygen as well as argon stream, 40 mg of the compound exhibited no mass change and remained stable upto 750° C, confirming that the stoichiometry remained unchanged (Table II).

UTeO₅ heated dynamically in argon ($p_{O_2} \approx 4.10^{-6}$ atm) in 10 mg quantity starts decomposing above $900\degree C$ and continues to lose till constant mass and yields a residue of 6.25 mg corresponding to U_3O_8 (Fig. 3b). UTe $O₅$ in dynamic heating in oxygen stream decomposes above 925° C (Fig. 3a). The partially decomposed substance contained U_3O_8 and UTeO₅ phases as analysed by XRD. The higher initiation temperature of decomposition of $UTeO₅$ in oxygen compared to that in argon supports the evolution of O_2 in the decomposition process. Hence the decomposition of $UTeO₅$ can be represented by the reaction:

$$
3UTeO5(s) \rightarrow U3O8(s) + 3TeO2(g) + \frac{1}{2}O2(g)
$$
 (D1)

Figure 3 Thermal decomposition in O_2 /Ar.

UTe₃O₉ heated dynamically in TG in oxygen or argon stream begins decomposing at 750 ◦C very slowly and above $900\,^{\circ}\text{C}$ the decomposition is quite fast and complete (Fig. 3c and d) leading to constant mass residue of 3.65 mg in 10 mg sample. The residue is characterized as U_3O_8 by XRD. Thus the complete decomposition can be shown by the reaction;

$$
3UTe3O9(s) \to U3O8(s) + 9TeO2(g) + \frac{1}{2}O2(g) (D2)
$$

The partial decomposition at $750\,^{\circ}\text{C}$ occurs via formation of $UTeO₅$ and the process can be written as:

$$
UTe3O9(s) \rightarrow UTeO5(s) + 2TeO2(g)
$$
 (D3)

The same initiation temperature of $750\,^{\circ}\text{C}$ in flowing $O₂$ and Ar for the thermogravimetric decomposition of $UTe₃O₉$ proves that $O₂$ has no role in the process and establishes that (D3) is the true representation of the decomposition.

Figure 4 Thermal decomposition in Ar-8%H2.

The decomposition reactions (D1) and (D2) shall form the basis of determining equilibrium pressure of $TeO₂$, $p_{TeO₂}$, over $U₃O₈ + UTeO₅$ and $U₃O₈ + UTe₃O₉$ at fixed O_2 pressure (\sim 1 atm) by transpiration method and hence for the derivation of the Gibbs free energy of formation of $UTeO₅$ and $UTe₃O₉$ [8]. Similarly, the reaction (D3) can be used for transpiration in inert atmosphere and determination of the free energies of formation of $UTe₃O₉$.

3.1. Reductive decomposition in Ar-8% H_2

The results of thermogravimetric decomposition of UTeO₄, UTeO₅, UTe₃O₈ and UTe₃O₉ in Ar-8%H₂ under dynamic heating at 10 K/min are presented in Table IV and Fig. 4. In all these experiments metallic tellurium, identified by XRD, was observed downstream in the reaction tube implying that $Te(g)$ was formed as a product in the reaction.

 $UTeO₄$ prepared by heating the mixture of $UO₂$ and TeO₂ or by the thermal decomposition of UTe₃O₈ in Ar- 8% H₂ decomposes in the range of 458–698 °C (Fig. 4a).

Initial mass of 10.00 mg of UTeO₄ yielded a constant mass residue of 6.28 mg corresponding to $UO₂$, as characterized by mass balance and XRD, establishing the decomposition reaction as:

$$
UTeO_4(s) + 2H_2(g) \to UO_2(s) + Te(g) + 2H_2O(g)
$$
\n(R1)

Similarly, UTe $O₅$ prepared by heating a mixture of $UO₂$ and TeO₂ in oxygen and also by decomposition of $UTe₃O₉$ in Ar-8% $H₂$ was observed decomposing in the temperature range of 468–783 ◦C and yielded a constant mass residue of 6.10 mg at $783\textdegree C$ in an initial mass of 10.00 mg (Fig. 4b). The residue was identified as $UO₂$ by mass and phase analysis. The reaction involved can be written as:

$$
UTeO5(s) + 3H2(g) \rightarrow UO2(s) + Te(g) + 3H2O(g)
$$
\n(R2)

 $UTe₃O₈$ and $UTe₃O₉$ undergo decomposition in two steps via the formation of the UTeO₄ and UTeO₅ respectively, as identified by XRD.

The I step in the decomposition of $UTe₃O₈$ occurs in the temperature range of $460-696$ °C leading to a constant mass residue of 5.74 mg of UTeO₄ at 696 °C in a sample of 10.00 mg. Mass loss that occurs in reaching the I step of reductive decomposition of $UTe₃O₈$ corresponds to two moles of $TeO₂(g)$ and the residue has mass equivalent to that of $UTeO₄$. The residue was identified by XRD as $UTeO₄$ and the pattern matched with that of the compound initially prepared and characterized by comparison with those of $UO₂$ and TeO₂. Thus was established that the I step decomposition product of UTe₃O₈ in Ar-8% H_2 was UTeO₄ only. This residual UTeO₄ remains stable upto 760° C and starts decomposing at higher temperatures giving rise to II step of decomposition of UTe₃O₈ and attains at 808 \degree C a constant mass of 3.62 mg in an initial mass of 5.74 mg of the I step residue (Fig. 4c). The final residue was characterized as $UO₂$ by mass balance and XRD. The decomposition of of the *in-situ* formed UTeO₄ in the single run decomposition of $UTe₃O₈$ occurs at a higher temperature (760 °C) compared to that (458 °C) of the independently prepared UTe $O₄$. When the decomposition run of $UTe₃O₈$ is stopped at complete conversion to $UTeO₄$ and the residue is cooled to room temperature and subjected to TG run, the decomposition begins at at 458 °C endorsing the stability of UTeO₄ upto 458 °C (Fig. 4a). The apparent anomaly of higher temperature of decomposition of of UTeO₄ in the TG run of UTe₃O₈ is explained to be due to higher moisture potential of $UTe₃O₈$ decomposition (equation R3) compared to that of UTeO₄ (equation R1). The decomposition behaviour of $UTe₃O₈$ can be represented by the following chemical reactions:

$$
UTe3O8(s) + 4H2(g) \rightarrow UTeO4(s) + 2Te(g) + 4H2O(g)
$$

$$
|+2H2
$$

$$
\rightarrow UO2(s) + Te(g) + 2H2O(g)
$$
(R3)

UTe3O9 starts decomposing at 560 ◦C yielding a mixture of $UTe₃O₉ + UTeO₅$. The decomposition to $UTeO₅$ is complete at 740 ◦C yielding a constant mass residue of 5.82 mg in 10.00 mg sample of UTe₃O₉ (Fig. 4d). The residual UTeO $_5$ (5.82 mg) undergoes decomposition at 750 °C and completes the process at 763 °C giving a constant mass residue of 3.53 mg characterized as UO2. Here too, the decomposition of the *in-situ* formed $UTeO₅$ in the continuous run occurs at higher temperature (750 $°C$) than that (468 $°C$) of the independently prepared UTe $O₅$, the reason being the same as stated above. The decomposition of $UTe₃O₉$ can be expressed by the following reactions:

$$
UTe3O9(g) + 4H2(g) \rightarrow UTeO5(s) + 2Te(g) + 4H2O(g)
$$

$$
|+4H2
$$

$$
\rightarrow UO2(s) + Te(g) + 3H2O(g)
$$
(R4)

3.2. Possibility of formation in irradiated nuclear fuel $UO₂$

The reaction (F3) can be rewritten as;

$$
UO_{2.67} + TeO_2 + 0.33/2O_2 = UTeO_5
$$
 (F3)

Perusal of reactions (F1) and (F3) shows that presence of oxygen is essential for the formation of $UTeO₅$ from $UO₂$ as well as $UO_{2.67}$. Though $UO_{2.67}$ has a higher oxygen content than $UO₂$, yet it needs oxygen, of course a smaller quantity $(0.33/2O_2)$, to form UTeO₅. In other words, oxygen potential for the formation of $UTeO₅$ is even higher than that of U_3O_8 and corresponds to that of UO_3 . Similarly, (F4) rewritten as;

$$
UO_{2.67} + 3TeO_2 + 0.33/2O_2 = UTe_3O_9
$$
 (F4)

can be compared with (F2). The conclusion is that the formation of $UTe₃O₉$ also requires an oxygen potential higher than that of U_3O_8 and corresponding to that of $UO₃$. Thus it is established that an environment with oxygen potential higher than that of U_3O_8 and corresponding to that of $UO₃$ is essential for the formation of both of UTeO₅ and UTe₃O₉. As a matter of fact the oxygen potential in an operating nuclear fuel is lower than that of even $UO_{2.24}$, the oxygen-rich boundary of UO_{2+x} phase (at 1100 °C) [9] as required by fuel design. Hence, the formation of UTeO₅ and UTe₃O₉ in UO₂based operating nuclear fuels is ruled out. Efforts are afoot to determine thermodynamic stabilities of UTeO4 and UTe_3O_8 .

4. Conclusions

In situ generated U_3O_8 is more reactive towards TeO₂ than independently prepared U_3O_8 . The complete decomposition of the compounds $UTeO₄$, $UTeO₅$, $UTe₃O₈$, $UTe₃O₉$ can be employed as a method of determination of their compositions in terms of mol % of $TeO₂$.

 $UTeO₄$ and $UTe₃O₈$ could form in $UO₂$ -based operating nuclear fuel while there is no possibility of formation of UTeO₅ and UTe₃O₉ in a nuclear reactor except in an accident involving rush-in of air.

The reductive decomposition of UTeO₄, UTeO₅, $UTe₃O₈$ and $UTe₈O₉$ in Ar-8% $H₂$ gas occuring around $600\degree$ C is quite rapid due to rapid vaporization of tellurium formed therein. Hence, the process can serve as another method of analysis of composition of the said compounds in terms of $TeO₂$.

 $UTeO₅$ decomposes at a higher temperature than that for $UTe₃O₉$. The latter decomposes via formation of the former. Hence, $UTeO₅$ is more stable than $UTe₃O₉$.

Acknowledgement

The authors wish to express their sincere thanks to Dr J. P. Mittal, Director, Chemistry Group for his kind and continued support. The authors are grateful to Dr A. B. Phadnis, A. S. Kerkar and R. Mishra for their cooperation at various stages of the work.

References

- 1. ^P . KHODADAD, *C. R. Acad. Sci. (Paris)* **255** (1962) 1617.
- 2. R. V. GAINES , *Amer. Min.* **56** (1971) 411.
- 3. *Idem.*, *ibid.* **54** (1969) 697.
- 4. P. J. GALY and G. MEUNIER, *Acta Cryst.* **B27** (1971) 608.
- 5. M. ^S . SAMANT, PhD thesis, Bombay Unviersity, 1994.
- 6. G. CHATTOPADHYAY, P. N. NAMBOODIRI, S. N. TRIPATHI and ^S . R. DHARWADKAR, *J. Phase Equilibria.* **19**(4) (1998) 310.
- 7. "GMELIN's Handbook of Inorganic Chemistry," Vol. C5, Uranium Supplement (1986) p. 97.
- 8. R. MISHRA, P. N. NAMBOODIRI, S. N. TRIPATHI, ^S . R. BHARDWAJ and ^S . R. DHARWADKAR, *J. Nucl. Mater.* **256**(2, 3) (1998) 139.
- 9. L. E. J. ROBERTSTAND and J. WALTER, *J. Inorg. Nucl. Chem.* **22** (1961) 213.

Received 8 December 1998 and accepted 12 July 1999